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Abstract 

 
We calculated numerically single particle energy levels of a neutron moving in a 

potential well for 209 Pb
 by using Numerov method. Firstly, the outwards and inwards 

eigenfunctions are obtained from the recursive formulas.  We solved radial part of 

Schrodinger equation with harmonic oscillator potential, central potential and 

Woods-Saxon potential to obtain single particle energy states of a neutron in 209 Pb
.  

The sub energy levels are obtained by using Woods-Saxon potential. It is observed 

that the energy levels depend on spin orbit potential.  

 

I. INTRODUCTION 

A hypernucleus is a nucleus which contains at least one hyperon in addition to the 

normal protons and neutrons. The first was discovered by Marian Danysz and Jerzy 

Pniewski in 1952 using the nuclear emulsion technique. 

Protons and neutrons are made of up (u) and down (d) quarks. A Lambda ( ) 

hyperon consists of one up, one down, and one strange (s) quark. Like neutrons the 

 -hyperons have no charge, but  -s are heavier than neutrons. As a hyperon does 

not have to obey the Pauli Exclusion principle with the neutrons and protons, it can 

enter deep inside a nucleus and occupy the same levels already filled with nucleons. 

This property of hyperons enabled us to view the deep-lying shell model structure of 

nuclei [1] that can not be seen in reactions with nucleons due to the Pauli blocking. 

The hyperons seem to act as glue inside a nucleus. It was found that if one replaces a 

neutron with a  -hyperon, it makes a bound Li10

  nucleus, while the normal Li10
 

nucleus is known to be unbound [2]. This indicates that hypernuclei with large 

neutron-to-proton ratios could exist in a stable state, even though the corresponding 

normal neutron-rich nuclei could be unstable. 

Although the nucleon-nucleon (NN) interaction is reasonably well known, the  N, 

N and  interactions are yet to be fully understood. One studies the  -

hypernucleus to estimate the basic  -nucleon interaction. Experimentally about 

thirty-five hypernuclei with one  -hyperon and six hypernuclei with two  -

hyperons have been found so far [3–6]. The   and  - separation energies from 

hypernuclei provide a window to estimate the  N, N- interactions properties of 

 s and nucleons.  

There are many kinds of energies, such as single particle energy, potential energy, 

kinetic energy, separation energy, and Fermi energy. We summarized in the following 

picture that the occupation number as a function of kinetic energy. 

Since the nucleus is a highly interactive system, although the temperature of the 

ground state of a nucleus should be absolute Zero, but the Fermi surface is not sharp 

but diffusive. The Fermi energy of a nucleon , which is the maximum kinetic energy 

of a nucleon, is approximately ~35 MeV. The potential energy is approximately ~ 50 
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MeV per nucleon. There is an additional energy for proton due to Coulomb force, 

which is a Coulomb barrier. The separation energy  is the difference between the 

potential energy and Fermi energy. The single particle energy is the energy for each 

single particle orbit. The binding energy for a nucleon is the energy requires to set that 

nucleon to be free, the energy difference between the single particle energy and the 

potential energy. 

 

II. NUMERICAL CALCULATION 

We solved numerically the radial part of Schroedinger's equation by using Numerov's 

method to obtain neutron single-particle energy. Numerov's method is a numerical 

method to solve ordinary differential equations of second order in which the first-

order term does not appear. It is a fourth-order linear multistep method. The method is 

implicit, but can be made explicit if the differential equation is linear.  

The Numerov method can be used to solve differential equation  

 

2

2

d u
k(r)u(r) S(r)

dr
   (1) 

Three values of un-1, un, un+1 taken at three equidistant points rn-1, rn, rn+1 are related as 

follows: 
2 2 2 2

5

n+1 n 1 n n n 1 n 1 n 1 n n 1

h 5h h h
u (1 k ) 2u (1 k ) u (1 k ) (S 10S S ) 0(h )

12 12 12 12
              (2) 

Where un = u(rn), kn = k(rn), Sn = S(rn) and h = rn+1-rn. 

For nonlinear equations of the form 

 

2

2

d u
f (u, r)

dr
  (3) 

the method gives 

 

2
5

n+1 n n-1 n 1 n n 1

h
u -2u  + u  = (f 10f f ) 0(h )

12
     (4) 

This is an implicit linear multistep method which reduces to the explicit method given 

above if f is linear in u by setting f (u, r) = -k(r)u(r) + S(r). It achieves order-4 

accuracy.  

In numerical physics the method is used to find solutions of the unidimensional 

Schrodinger equation for arbitrary potentials. It is used to solve the radial equation for 

a spherically symmetric potential. After separating the variables and analytically 

solving the angular equation, we get the following equation of the radial function 

R(r):  

 

2 2

2 2 2

d u(r) 2 ( 1)
E V(r) u(r) 0

dr 2 r

  
    

 
 (5) 

Where u(r) = rRnl is the reduced radial wave function.   

A regular solution near the origin for 
1u(r) : u(r 0) r    

The asymptotic solution at 
2rr : u(r ) u(r) e ,    = constant 

The Schrödinger Radial Equation can be written as follow:  

 

2

2

d u(r)
k(r)u(r) 0

dr
   (6) 
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2

r2

''d u(r)
u k(r)u(r)

dr
   (7) 

k(r) = 

2

2 2

2 ( 1)
E V(r)

2 r

  
  

 
 is the kernel equation.  

Equation (5) can be solved by Numerov Algorithm as follow: 

First we split the r range into N points according to rn = rn-1 + h;then we write the 

wave function un u (rn)=u(rn-1+h) and kn k (rn) =k (rn-1+h). 

Expanding u(r) around rn: 

 

2 3
(r r ) (r r )n n

u(r) u(r ) (r r )u '(r ) u "(r ) u "'(r )n n n n n
2! 3!

 
      

 

4
(r r ) iv 5n

u (r ) 0(h )n
4!


    (8) 

If we evenly discretize the space, we get a grid of r points, where n 1 nh r r  . By 

applying the above equations to this discreet space, we get a relation between the un 

and un+1: 
2 3 4

h h h iv 5
u u(r h) u(r ) hu '(r ) u "(r ) u "'(r ) u (r ) 0(h )n n n n n nn 1

2! 3! 4!
         (9) 

Since n nu u(r ),  

 

2 3 4
iv 5

n 1 n n n n n

' " "'h h h
u u hu u u u 0(h )

2 6 24
        (10) 

Computationally, this amounts to taking a stepforward by an amount h. If we want to 

take a stepbackwards, we repleace every h with –h and get the expression for un-1: 
2 3 4

iv 5

n 1 n n n n n n

h h h
u u(r h) u(r ) hu '(r ) u"(r ) u"'(r ) u (r ) 0(h )

2! 3! 4!
          (11) 

 

2 3 4
5

n 1 n n n n

iv
n

' " "'h h h
u u hu u u u 0(h )

2 6 24
        (12) 

By summing the two equation (10) and equation (12), 

 

4
2 iv 5

n 1 n n 1 n n

" h
u 2u u h u u 0(h )

12
       (13) 

To get an expression for the 
iv

nu factor, we simply have to differentiate 

n n n

"u k u  twice and approximate it again in the same way we did this above: 

 

2
iv

n n n2

d
u ( k u )

dx
   (14) 

From equation (13), 

 
2

n 1 n n 1 n

"u 2u u h u     (15) 

 
2 iv

n 1 n n 1 n

" " "u 2u u h u     (16) 

 
2 iv

n 1 n 1 n n n 1 n 1 nu k 2u k u k h u        (17) 

Substituting equation (17) into equation (13) 
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2
2

n 1 n n 1 n n n 1 n 1 n n n 1 n 1

h
u 2u u h u k ( u k 2u k u k )

12
              (18) 

 

2 2 2

n 1 n 1 n n n 1 n 12

h 5h h
u (1 k ) 2u (1 k ) u (1 k ) 0

12 r 12
          (19) 

from equation (19), we obtained the following relations. 

For forward recursive relation 

 

2 2

n 1 n 1 n 2 n 2

n 2

n

5h h
2(1 k )u (1 k )u

12 12u
h

(1 k )
12

     




 (20) 

For backward recursive relation 

 

2 2

n n n 1 n 1

n 1 2

n 1

5h h
2(1 k )u (1 k )u

12 12u
h

(1 k )
12

 





  




 (21) 

Therefore when we calculate our wavefunction using the backward-forward 

technique, we should note that the recursive formulas imply having knowledge of two 

initial values for each direction. It is also necessary to know the first derivative at the 

appropriate order. By subtraction from equation (20) to equation (21) 

 

3

n 1 n 1 n n

' "'h
u u 2hu 2 u

6
     (22) 

 

2 2

n n 1 n 1 n 1 n 1

' 1 h h
u (1 k )u (1 k )u

2h 6 6
   

 
    

 
 (23) 

We calculated single neutron energy levels of 209 Pb by using central potential and 

Wood's-Saxon potential as shown in Fig. (1), (2) and (3). 

  

III. CALCULATION OF ENERGY LEVELS 
Since both uout(r) and uin(r) satisfy a homogeneous equation, their normalization can 

always be chosen so that they are set to be equal at the rc point. An energy eigenvalue 

is then signaled by the equality of derivatives at this point. At the matching point the 

eigenfunctions uout(r) and uin(r) and first derivatives out

'u (r) and in

'u (r) must all satisfy 

the continuity conditions: 

 out rc in rc out rc in rc(u ) (u ) (u ' ) (u ' )   (24) 

thus, we can write the corresponding condition for the logarithmic derivative at rc as  

 out in

out in rcrc

u ' u '

u u

   
   
  

 (25) 

and then we can define a Match (E) function at rc whose zeros correspond to the 

energy eigenvalues as  

 out in

out in rcrc

u ' u '
Match(E)

u u

   
    

  
 (26) 

Therefore we proceed numerically in the following way: we set a trial energy range 

splitting this E range into N points, according to n n 1E E E   , where E  is the 
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energy step. For each En we calculate their eigenfunctions uout and uin at the rc point; 

and we build the Match(E) function here, looking for a change of sign in it (which 

implies a zero cross).  

When we find the energy eigenvalue, the calculated inwards and outwards 

eigenfunctions will tend not to match at the rc point. However we can look for a 

strategy to solve this problem: Denoting the outwards and inwards functions directly 

obtained from the recursive formulas as uo(r) and ui (r), respectively, the physical 

uout(r) and uin(r) eigenfunctions can be rewritten as  

uout(r) = A uo(r)           uin(r) = B ui(r) (27) 

A and B are constants. Their respective derivatives are  

out inu ' (r) Auo'(r) u ' (r) Bui '(r)   (28) 

c c c cr r r r(Auo(r)) (Bui(r)) (Auo'(r)) (Bui '(r))   (29) 

and performing the difference, we get 

c

ui ui '
A B f B

uo uo'

 
   

 (30) 

where fc will be a scaling factor to be applied to uout(r). Therefore 

uout(r) =B fc uo(r)               uin(r) = B ui (31) 

and B is a global factor that must be taken into account in the normalization process. 

 

     
 

 

 

 

 
 

 

 

 

IV. RESULTS AND DISCUSSION 

We calculated wave functions for various state such as s, p, d and g states. The results 

are shown in Fig. (1), (2), (3) and (4). Fig.(1) shows lambda s-states wave functions 

Fig. (3) Woods-Saxon potential 

with spin-orbit for 209 Pb  

Fig. (2) Woods-Saxon spin 

independent central potential for 209 Pb  

 

Fig. (1) Harmonic-Oscillator 

Potential for 209 Pb  
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with harmonic oscillator potential for 209 Pb . Fig. (2) and (3) show lambda p and d-

states wave functions with harmonic oscillator potential for 209 Pb . Fig. (4) shows 

neutron wave functions of 1s, 1p and 1d states with harmonic oscillator potential for 
209 Pb . It is seen that all wave functions are finite. 

The number of neutrons are allowed by the Pauli principle to occupy one of these 

levels. n is the radial quantum number (the number of times the radial wave function 

changes sign) and ℓ is the angular momentum quantum number represented in the 

spectroscopic notations s, p, d, f, g, h, i and j for ℓ=0, 1, 2, 3, 4, 5, 6 and 7, 

respectively. Each ℓ value can have 2ℓ+1 m states and each m state can contain a 

proton or neutron with spin up and spin down (sz=±1/2). The occupation number 

given by the Pauli principle is thus No = 2(2ℓ + 1). 

 The lambda single-particle states in 209 Pb  with three potential models, harmonic 

oscillator , Woods-Saxon without spin-orbit  and Woods-Saxon with spin orbit are 

obtained  by solving Schrödinger equation. The results are shown in Table (1). It is 

indicated the effect of the spin-orbit potential in splitting the states of a given ℓ value. 

The overall strength of the spin-orbit potential has been determined empirically. We 

compare our results with experimental results [7] and theoretical results [8].  

 

Table (1) Comparison of theoretical results and experimental results of Lambda 

single-particle energies in 
209
ΛPb  

Sub 

Shell 

Theoretical  results [8] (MeV) Experimental 

results [7]  

(MeV) 

Our results (MeV) 

O A F 
Central 

Potential 

Spin-Orbit 

Potential 

1s -23.1 -29.5 -26.5 -27.0 -25.39 -25.30 

1p -19.6 -25.7 -22.4 -22.0 -20.8 -20.89 

1d -14.5 -21.0 -17.5 -17.0 -15.39 -15.60 

1f -10.5 -15.7 -11.8 -12.0 -9.3 -9.59 

1g -5.1 -9.7 -5.6 -7.0 -2.79 -3.29 

 

   
 

 

 

 

Fig. (1) Neutron s-states wave 

functions with HO potential for 209 Pb  

 

Fig. (2) Neutron p-states wave 

functions with HO potential for 209 Pb  
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V. CONCLUSION 

We calculated lambda single particle energy 
209
ΛPb in by using Numerov's method for 

central potential and spin-orbit potential. Our results are compared with experimental 

results [7] and other theoretical results [8]. A. Vidana et al., [8] are calculated 

Brueckner-Hartree-Fock method for Nijmegen various O, A and F which are divided 

according to effective mass of lambda 
*m / m 0.78,0.67   and 0.81. Our results are 

a little different with those results and experimental results. 
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